		gallons	cost	total
	Mod 3	11,600°	15.00⁵	\$ 174,000
	Mod 4	11,600°	23.65 ^d	\$ 274,340
Current	Phase 1 and 2 test fuels	3,300	24.06°	\$ 79,398
	Phase 1 fuels to EPA	660	23.95°	\$ 15,807
	Phase 3 test fuels	8,800	28.10°_	\$ 247,280
		12,760		\$ 326,678

a -- Based on 50 gallons per drum. 3Phas

	5	60 gal/drum 55	gal/drum
3Phase 1 fuels	10 ea	1500	1650
3Phase 1 fuels to EPA	4ea	600	660
3Phase 1 fuels	10 ea	1500	1650
16Phase 1 fuels	10 ea	8000	8800
		11 600	12 760

- b -- Based on verbal budgetary estimate provided by Jim Carter of Haltermann on 10-16-2007.
- c -- Should have been 12,760 gallons based on 55 gallons per drum.
- d Should have been \$23.76 based on Haltermann quotation of 01-18-2008. Inadvertently used cost for fuel delivered to EPA.
- e -- Based on Haltermann quotation of 02-01-2008.

Rough illustration of change in cost per gallon:

assume total cost of fuel is based on:

x = blended cost per gallon

y = fixed cost of setup for blending

In the case of Mod 4 (row 4):

Haltermann assumed 24 drums of each fuel as the basis of \$23.65/gal delivered.

24 drums x 55 gallons x \$23.65 = 31218

In the case of current Phase 3 test fuels (row 8)

Haltermann assumed 10 drums of each fuel as the basis of \$28.10/gal delivered.

10 drums x 55 gallons x \$28.10 = 15455

24 drums x 55 gallons = 1320 gallons 10 drums x 55 gallons = 550 gallons

Gives

1320 gallons @ "x" \$/gal + fixed setup cost "y" = 31218 550 gallons @ "x" \$/gal + fixed setup cost "y" = 15455

OR

1320 x + y = 31218 (1)

550 x + y = 15455 (2)

(1) gives: y = 31218 - 1320 x (3)

(2) & (3) gives:

550 x + 31218 - 1320 x = 15455

Rearrange

31218 - 15455 = 1320 x - 550 x

15763 = 770 x

x = \$20.47 fuel cost per gallon y = \$4,196 fixed cost of setup